A prolongation-projection algorithm for computing the finite real variety of an ideal
نویسندگان
چکیده
We provide a real algebraic symbolic-numeric algorithm for computing the real variety VR(I) of an ideal I ⊆ R[x], assuming VR(I) is finite (while VC(I) could be infinite). Our approach uses sets of linear functionals on R[x], vanishing on a given set of polynomials generating I and their prolongations up to a given degree, as well as on polynomials of the real radical ideal R √ I obtained from the kernel of a suitably defined moment matrix assumed to be positive semidefinite and of maximum rank. We formulate a condition on the dimensions of projections of these sets of linear functionals, which serves as stopping criterion for our algorithm. This algorithm is based on standard numerical linear algebra routines and semidefinite optimization and combines techniques from previous work of the authors together with an existing algorithm for the complex variety. This results in a unified methodology for the real and complex cases.
منابع مشابه
An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ
An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...
متن کاملAn Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ
An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...
متن کاملFast System Matrix Calculation in CT Iterative Reconstruction
Introduction: Iterative reconstruction techniques provide better image quality and have the potential for reconstructions with lower imaging dose than classical methods in computed tomography (CT). However, the computational speed is major concern for these iterative techniques. The system matrix calculation during the forward- and back projection is one of the most time- cons...
متن کاملBorder Basis of an Ideal of Points and its Application in Experimental Design and Regression
In this paper, we consider the problem of computing the order ideal and the corresponding border basis for the vanishing ideal of a given finite set of points with multiplicity The ideal of points has different applications in science and engineering. In this paper, we focus on presenting some models related to a real experiment and show the role of our approach in providing good statistical p...
متن کاملA Proximal Point Algorithm for Finding a Common Zero of a Finite Family of Maximal Monotone Operators
In this paper, we consider a proximal point algorithm for finding a common zero of a finite family of maximal monotone operators in real Hilbert spaces. Also, we give a necessary and sufficient condition for the common zero set of finite operators to be nonempty, and by showing that in this case, this iterative sequence converges strongly to the metric projection of some point onto the set of c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 410 شماره
صفحات -
تاریخ انتشار 2009